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Calculation of Intercavity Coupling Coefficient for

Side Coupled Standing Wave Lkear Accelerator

Rajat Roy and O. Shanker

Abstract-Expressions are developed for the main to side cavity
coupling coefficient of a side coupled standing wave Iinac structure and
fortheshift in cavity resonant frequency produced bythe coupling iris.

The theoretical predictions show reasonable agreement with the measured
values.

I. lNTRODUCHON

Our institution fabricates linear accelerator (linac) systems for

radiotherapy and radiography. The linac tubes are of the side cou-

pled type [1], [2] and are operated in the standing wave mode at

2998 MHz. Fig. Ishowsthe basic cell consisting oftwo main half-

cavities joined by a side cavity. The linac tube is built up by stacking

these basic cells to form full main cavities. The microwave coupling

between cavities is through the iris hole between the main and

side cavities. The value of this coupling coefficient is an important

parameter in designing the linac. Till recently we had no access

to calculations of this coupling coefficient, and had to rely solely

on experimental measurements. We have now managed to develop

calculation techniques for the coupling constant, and these techniques

form the subject matter of this paper.

The equivalent. circuit of two coupled half-cavities is shown in

Fig. 2. The microwave field distribution and the mode spectrum

resulting from the coupling of several microwave resonant cavities are

given in [1]-[5]. These are useful in the experimental measurement

of thecoupling constant (Section II). [6], [7]discuss thedesign of the

optimum cavity shape. The design process can be greatly simplified

if one has a theoretical prediction for the coupling coefficient and the

shift in cavity frequency due to the opening of the iris. The techniques

for such a prediction are presented in Section III, using the theory of

diffraction by small holes developed by Bethe [8], generalized to the

case of an elliptical iris. In Section IV we compare the theoretical

predictions (using the cavity field values calculated by the FEM [7])

with the experimental results, and present the conclusions.

II. EXPERIMENTAL DETERMINATION OF THE COUPLING CONSTANT

The experimental determination of the intercavity coupling con-

stant is quite straightforward and involves only the measurement of

the system resonant frequencies. The frequency measurement is done

using the textbook method of displaying the reflection coefficient

as a function of frequency using a sweep oscillator and a network

analyzer, and finding where the dips in the reflection coefficient occur.

These give the resonant frequencies to an accuracy of 0.01 MHz when

special care is taken and 0.1 MHz under normal conditions. When

one of the cavities is detuned we get one resonant frequency, the

resonant frequency of thenon-detuned cavity. When neither cavity is

detuned we get a pair of frequencies. The shifts of these frequencies

from the resonant frequencies of the uncoupled cavities are. functions

of the coupling coefficient, and thus the coefficient can be determined

using theexpressions presented in [2]–[5].
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Fig. 1. Main and side cavities (dimensions are in mm).

III. THEORY OF COUPLED MICROWAVE CAVITIES

The equations of the coupled modes of oscillations of two cavities

with acircular hole intheir common wall aregivenby Bethe [8]1. In

terms of the cavity excitationsqa andqp andthe cavity frequencies

w~ andwP, these equations are(Eq. nos. (78) and(78a)of [8])

with Cij = 2@~:@j –~~n .~jm, and where the subscripts andj

range over the values a and ~ and refer to the two coupled cavities

respectively, the subscript n. denotes the component normal to the
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Fig. 2. Equivalent circuit for the cavities, showing the intercavity coupling
coefficient represented as a mutual inductance.

aperture (Bethe uses the notation z in place of n), Fm are the vector

potentials for different mode indices m, Am is curl Fro/km and the

cavity fields are given in terms of these potentials by

and

(2)
.

The relationship of Bethe’s coupling coefficient cmp to the mutual

inductance A4mp occurring as a parameter in the equivalent circuit

model is given in Fig. 2. In (1) we consider only the lowest mode

(m= 1). Also, in all the small quantities involving c~~, cpp, cap

and the l/Qm and I/QP terms we use the average frequency

wo = (w~ + tip) /2 in place of the almost equal frequencies u~
and WP.

The coupled cavity system with two identical half main cavities a

and a side cavity @ is shown in Fig. 1. The shape of the coupling

aperture (Fig. 3) between the cavities is quite different from a circle

and is furthermore on a curved surface. However one can make

a simplifying assumption that the iris is an elliptical one with 11

and 12 as shown in Fig. 3 as its semi-major and semi-minor axes

respectively. The assumed centre of the ellipse is the point marked

with a cross on the same figure. The generalization of equation (1) for

an elliptical hole from a circular one can be easily made following the

steps of Collin [9]. Since the actual iris has some sharp corners, the

fringing fields near these corners will introduce errors which limit

the accuracy of the solution. The errors are small enough for the

method to yield useful results.

A further assumption we have to make to apply Bethe’s formulation

to our problem is that the aperture lies on the common wall of the two

coupled cavities. This is not strictly true for our problem as the side

cavity and the main cavity volumes overlap each other in the region of

the aperture. Thus while we can consider the aperture to be on the wall

of the main cavity the side cavity shape has to be perturbed to make

the aperture lie on its boundary wall. However if this perturbation is

small the field distribution will not substantially change and this is

the case when the depth of overlap ‘d’ shown in Fig. 1 is small.

To evaluate the quantities c~~, CP6 and c@D we use the fields of

the unperturbed side cavity, that is, assuming d to be small which

becomes increasingly false at higher values of the coupling between

the cavities. The component of the electric field normal to the aperture

and of the magnetic field tangential to it have to be evaluated at the

interior points of the side cavity because these are the components

that enter in the expressions for c~m, CPP and cap. For the main

cavity side where the aperture lies on its wall this is already taken

care of as the total electric field is always normal and the magnetic

field always tangential to it.

h SIDE CAVITY

w, CAVITY
Fig. 3. The aperture shape showing the length of the major and minor axis

respectively of the equivalent ellipse by which it is represented. Inset shows
an isometric view of the iris and the cavities.

The generalization of equation (1) for an elliptical aperture along

with the appropriate alterations introduced to take into account a

change from the Gaussian system of units used by Bethe to a MKS

system used by Collin [9] gives

d2qm
-@- + W:ffa = W;(c..qa – ca/3q/3)

dzqp
~ + U;qfl = w:(cp/3qfl – Caflqa) , (3)

where C’~~ (i, j ranging over the values a and ,0) is

27rl~e2 - -

ci~ = 3[k(e) – E(e)] “i “ ‘z’

27rl~e2(l – e2) - -.

+ 3[13(e) – (1 – e2)1{(e)] ‘y’ “ “3

(4)

and where the ‘ E‘s and the ‘ H‘s are the components of the time

independent parts of the dominant mode of the electric and magnetic

fields respectively of each cavity (~ or /3) normalized according to

instead of (65d) of Bethe [8]. In the above, e is the eccentricity of

the ellipse, 11 is its semi-major axis and A-(e) and E(e) are the

complete el~ptic i~tegrals -of the+ first and second kind [10]. While

evaluating HZW . Hzp or Hym . Hvfl in the expressions for C’mo one

should be careful to take into account the sense of the fields in each

cavity. Henceforth we also neglect the loss term assuming ‘ Q‘s to

be infinite as we did in (3). We also note that the upper-case ‘C’ has

been used in (3) and (4) in place of the lower case letter used for

the corresponding quantities in (1) and (2) to maintain a distinction.

From (3) we see that a result of cutting the iris, the frequencies of

the cavities shift from the uncut values to

and

The next section gives the application of this theory to calculate

the inter-cavity coupling constant and the cavity frequent shift.
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TABLE I
COMPARISONOF MEASUSEDAND CALCULATEDPARAMETERS

Main Cavity Frequency Main to Side Cavity

Depth of (MHz) Coupling

Overlap ‘d’
(mm) Measured Calculated Measured Calculated

6 2997.85 2994.96 0.0127 0.0111
7.6 2991.79 2988.16 0.0216 0.0204
8.6 2987.55 2984.69 0.0282 0.0281
9.2 2984.15 2982.94 0.0321 0.0335

IV. CALCULATIONS AND RESULTS

To evaluate the inter-cavity coupling constant one has to first

evaluate the fields at the center of the ellipse by which the aperture

is represented. We do this by using the finite element routine

developed in [7]. The computed values of the frequency of the main

cavity (with the aperture on its wall), and the intercavity coupling

constant are given in Table I for different sizes and positions of

the iris as determined by the depth of overlap d. Along with these

the corresponding experimental values are also given. The uncut

resonant frequency of the main cavity used for generating Table I

was 3006.7 MHz. Earlier we only had the experimental technique.

The new aspect is our ability to predict the values. The prediction is

precise enough for our needs during the initial design stage. Thus,

we have been able to simplify the design process.
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Shape Function Optimization in the Finite

Element Analysis of Waveguides

H. E. Hernindez-Figueroa and G. Pagiatakis

Abstract—In this paper, a novel finite element technique is presented,

which can substantially reduce the computational effort required for the

analysis of waveguide structures. Demonstrative examples, whose finite

element solutions are obtained by combhing this technique with two

well-known formulations —.& – H; and H-field-are given.

I. INTRODUCTION

A drawback of the finite element method when applied to modal

waveguide analysis is the extensive use of computer resomrces:

memory space and time. Although the order of the resulting matrix

eigenvalue problem mainly depends on the geometry of the specific

structure analyzed, the kind of mesh adopted, and the formulation

used, most of these problems demand a large amount of data

manipulations. However, substantial reduction of the computational

effort can be achieved by taking advantage of the Rayleigh–Ritz

Principle (RRP), which is the basis of the cwfmite element technique

[1]-[3]. This technique was first introduced by Laura and co-workers

(see [1] and references therein) who used modified basis funclions

for the bilinear quadrilateral (Q I ) elements applied to the scalar 2-D

Helmholtz equation. In [2], novel basis functions were introdttced to

deal with the versatile linear triangular (PI ) elements, and applied to

the vectorial E% – Hz formulation [4]. Also, in that reference., the

performances of those two sets of basis functions were compared,

and the results showed almost no differences in terms of accuracy.

However, as the modified l’1 functions provide close analytical

expressions for the integrals associated with the elements of the

elementary matrices, these functions are much more attractive than

the Q 1 ones, which instead require the use of numerical integration

schemes, and therefore, more CPU time.

In this paper, the P1-a-finite element technique is presented, and

the conditions for combining with finite element formulations for the

analysis of waveguide structures are discussed. Also, the feasibility

of such combined approaches is demonstrated by making use of the

widely known E, – H, and H-field [5] formulations, applied to the

analysis of hollow and dielectric-loaded metallic waveguides which

possess analytical solutions [6].

11. THE PI -CY-FINITE ELEMENT TECHNIQUE

This technique, contrary to the common practice of increasing the

mesh size or the basis function order, minimizes the discretization

error, for a given mesh, by taking advantage of the RRP. According

to this principle, the approximate eigenvahres ~~, obtained by solving

the resulting matrix eigenvalue problem AZ = MJ.z, where A and

B are Hermitian and B is positive definite, are always upper bounds
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