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Calculation of Intercavity Coupling Coefficient for
Side Coupled Standing Wave Linear Accelerator

Rajat Roy and O. Shanker

Abstract— Expressions are developed for the main to side cavity

coupling coefficient of a side coupled standing wave linac structure and

for the shift in cavity resonant frequency produced by the coupling iris.
The theoretical predictions show reasonable agreement with the measured
values.

I. INTRODUCTION

Our institution fabricates linear accelerator (linac) systems for
radiotherapy and radiography. The linac tubes are of the side cou-
pled type [1], [2] and are operated in the standing wave mode at
2998 MHz. Fig. 1 shows the basic cell consisting of two main half-
cavities joined by a side cavity. The linac tube is built up by stacking
these basic cells to form full main cavities. The microwave coupling
between cavities is through the iris hole between the main and
side cavities. The value of this coupling coefficient is an important
parameter in designing the linac. Till recently we had no access
to calculations of this coupling coefficient, and had to rely solely
on experimental measurements. We' have now managed to develop
calculation techniques for the coupling constant, and these techniques
form the subject matter of this paper.

The equivalent. circuit of two coupled half-cavities is shown in .

Fig. 2. The microwave field distribution and the mode spectrum
resulting from the coupling of several microwave resonant cavities are
given in [1]-[5]. These are useful in the experimental measurement
of the coupling constant (Section II). [6], [7] discuss the design of the
optimum cavity shape. The design process can be greatly simplified
if one has a theoretical prediction for the coupling coefficient and the
shift in cavity frequency due to the opening of the iris. The techniques
for such a prediction are presented in Section III, using the theory of
diffraction by small holes developed by Bethe [8], generalized to the
case of an elliptical iris. In Section IV we. compare the theoretical
predictions (using the cavity field values calculated by the FEM [7])
with the experimental results, and present the conclusions.

II. EXPERIMENTAL DETERMINATION OF THE COUPLING CONSTANT

The experimental determination of the intercavity coupling con-
_stant is quite straightforward and involves only the measurement of
the system resonant frequencies. The frequency measurement is done
using the textbook method of displaying the reflection coefficient
as a function of frequency using a sweep oscillator and a network
analyzer, and finding where the dips in the reflection coefficient occur.
These give the resonant frequencies to an accuracy of 0.01 MHz when
special care is taken and 0.1 MHz under normal conditions. When
one of the cavities is detuned we get one resonant frequency, the
resonant frequency of the non-detuned cavity. When neither cavity is

detuned we get a pair of frequencies. The shifts of these frequencies

from the resonant frequéncies of the uncoupled cavities are. functions
of the coupling coefficient, and thus the coefficient can be determined
using the expressions presented in [2]-[5].
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Fig. 1.

Main and side cavities (dimensions are in mm).

III. THEORY OF COUPLED MICROWAVE CAVITIES

The equations of the coupled modes of oscillations of two cavities
with a circular hole in their common wall are given by Bethe [8]. In
terms of the cavity excitations ¢, and g and the cavity frequencies
we and wg, these equations are (Eq. nos. (78) and (78a) of [8])

d?qe | wo dya 4 ,4d° A
et Q. @ T ede = 3 0y (Ceate — captp)

42 a3 wo dQﬁ 4 a®

— + = Q5 dt +w[;qg = wo Va (Cﬂ[gqﬂ Ca,@Qot)’ (1)

with ¢;; = 2F; . F'} — Ain - an, and where the subscripts ¢ and j
range over the values « and 3 and refer to the two coupled cavities
respectively, the subscript » denotes the component normal to the
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Fig. 2. Equivalent circuit for the cavities, showing the intercavity coupling
coefficient represented as a mutual inductance.

aperture (Bethe uses the notation « in place of n), F,,, are the vector
potentials for different mode indices m, A, is curl F,,,/k,. and the
cavity fields are given in terms of these potentials by

= 1 dgm 7
H= c e - )
and
E=Y" gukmAn(?). )

The relationship of Bethe’s coupling coefficient ¢, to the mutual
inductance M,p occurring as a parameter in the equivalent circuit
model is given in Fig. 2. In (1) we consider only the lowest mode
(m = 1). Also, in all the small quantities involving caa, s, Cap
and the 1/Q, and 1/Qps terms we use the average frequency
wo = (ws +wg)/2 in place of the almost equal frequencies wa
and wg.

The coupled cavity system with two identical half main cavities «
and a side cavity 3 is shown in Fig. 1. The shape of the coupling
aperture (Fig. 3) between the cavities is quite different from a circle
and is furthermore on a curved surface. However one can make
a simplifying assumption that the iris is an elliptical one with I4
and Il as shown in Fig. 3 as its semi-major and semi-minor axes
respectively. The assumed centre of the ellipse is the point marked
with a cross on the same figure. The generalization of equation (1) for
an elliptical hole from a circular one can be easily made following the
steps of Collin [9]. Since the actual iris has some sharp corners, the
fringing fields near these corners will introduce errors which limit
the accuracy of the solution. The errors are small enough for the
method to yield useful results.

A further assumption we have to make to apply Bethe’s formulation
to our problem is that the aperture lies on the common wall of the two
coupled cavities. This is not strictly true for our problem as the side
cavity and the main cavity volumes overlap each other in the region of
the aperture. Thus while we can consider the aperture to be on the wall
of the main cavity the side cavity shape has to be perturbed to make
the aperture lie on its boundary wall. However if this perturbation is
small the field distribution will not substantially change and this is
the case when the depth of overlap ‘d’ shown in Fig. 1 is small.

To evaluate the quantities cqq, cgs and cos we use the fields of
the unperturbed side cavity, that is, assuming d to be small which
becomes increasingly false at higher values of the coupling between
the cavities. The component of the electric field normal to the aperture
and of the magnetic field tangential to it have to be evaluated at the
interior points of the side cavity because these are the components
that enter in the expressions for caa, ¢gg and c.g. For the main
cavity side where the aperture lies on its wall this is already taken
care of as the total electric field is always normal and the magnetic
field always tangential to it. '
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Fig. 3. The aperture shape showing the length of the major and minor axis
respectively of the equivalent ellipse by which it is represented. Inset shows
an isometric view of the iris and the cavities.

The generalization of equation (1) for an elliptical aperture along
with the appropriate alterations introduced to take into account a
change from the Gaussian system of units used by Bethe to a MKS
system used by Collin [9] gives

d*qa +wlqn = 2(()’ C
dtz Wafo = Wollaado — aBQﬁ)
dtz P+ whas = wh(Cppap — Capda), €)
where C;; (¢, j ranging over the values  and g) is
ol e? . .
Cii=cr 53— -H,;
7 3[k(e) — E(e)] !
2rlie (1 - 62) _ s
N Hy: - Hy;
T 3B - (1 - K (e)]
a3 (1l —e?) o o ‘
- —1( ) E,; - Enj (4)

3E(e)

and where the ‘E’s and the ‘H’s are the components of the time
independent parts of the dominant mode of the electric and magnetic
fields respectively of each cavity (« or 3) normalized according to

2
//-Lo dr 2/ Mo
« B/2

instead of (65d) of Bethe [8]. In the above, e is the eccentricity of
the ellipse, !, is its semi-major axis and K(e) and E(e) are the

complete elhptlc integrals of the first and second kind [10]. While
evaluating H,. - H zp Of Hy. - H 3 in the expressions for C,3 one
should be careful to take into account the sense of the fields in each
cavity: Henceforth we also neglect the loss term assuming ‘@’s to
be infinite as we did in (3). We also note that the upper-case ‘C” has
been used in (3) and (4) in place of the lower case letter used for
the corresponding quantities in (1) and (2) to maintain a distinction.
From (3) we see that a result of cutting the iris, the frequencies of
the cavities shift from the uncut values to

2
— Wy Caa

. o |2
Ha H/; dr =1

2 2
wa = wa

and
2 2 2
wg = wg —wyCagp.

The next section gives the application of this theory to calculate’
the inter-cavity coupling constant and the cavity frequent shift.
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TABLE I
COMPARISON OF MEASURED AND CALCULATED PARAMETERS

Main Cavity Frequency Main to Side Cavity

Depth of (MHZ) Coupling
Overlap ‘d’
(mm) Measured Calculated Measured Calculated
6 2997.85 2994.96 0.0127 0.0111
7.6 2991.79 2988.16 0.0216 0.0204
8.6 2987.55 2984.69 0.0282 0.0281
9.2 2984.15 2982.94 0.0321 0.0335

IV. CALCULATIONS AND RESULTS

To evaluate the inter-cavity coupling constant one has to first
evaluate the fields at the center of the ellipse by which the aperture
is represented. We do this by using the finite element routine
developed in [7]. The computed values of the frequency of the main
cavity (with the aperture on its wall), and the intercavity coupling
constant are given in Table I for different sizes and positions of
the iris as determined by the depth of overlap d. Along with these
the corresponding experimental values are also given. The uncut
resonant frequency of the main cavity used for generating Table I
was 3006.7 MHz. Earlier we only had the experimental technique.
The new aspect is our ability to predict the values. The prediction is
precise enough for our needs during the initial design stage. Thus,
we have been able to simplify the design process.
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Shape Function Optimization in the Finite
Element Analysis of Waveguides

H. E. Herndndez-Figueroa and G. Pagiatakis

Abstract—In this paper, a novel finite element technique is presented,
which can substantially reduce the computational effort required for the
analysis of waveguide structures. Demonstrative examples, whose finite
element solutions are obtained by combining this technique with two
well-known formulations— E, — H. and H-field—are given.

I. INTRODUCTION

A drawback of the finite element method when applied to modal
waveguide analysis is the extensive use of computer resources:
memory space and time. Although the order of the resulting matrix
eigenvalue problem mainly depends on the geometry of the specific
structure analyzed, the kind of mesh adopted, and the formulation
used, most of these problems demand a large amount of data
manipulations. However, substantial reduction of the computational
effort can be achieved by taking advantage of the Rayleigh—Ritz
Principle (RRP), which is the basis of the o-finite element technique
[1]-[3]. This technique was first introduced by Laura and co-workers
(sec [1] and references therein) who used modified basis functions
for the bilinear quadrilateral (Q)1) elements applied to the scalar 2-D
Helmholtz equation. In [2], novel basis functions were introduced to
deal with the versatile linear triangular (Py) elements, and applied to
the vectorial E, — H, formulation [4]. Also, in that reference, the
performances of those two sets of basis functions were compared,
and the results showed almost no differences in terms of accuracy.
However, as the modified P; functions provide close analytical
expressions for the integrals associated with the elements of the
elementary matrices, these functions are much more attractive than
the ()1 ones, which instead require the use of numerical integration
schemes, and therefore, more CPU time.

In this paper, the P;-o-finite element technique is presented, and
the conditions for combining with finite element formulations for the
analysis of waveguide structures are discussed. Also, the feasibility
of such combined approaches is demonstrated by making use of the
widely known E, — H. and H-ficld [5] formulations, applied to the
analysis of hollow and dielectric-loaded metallic waveguides which
possess analytical solutions [6].

II. THE P;-a-FINITE ELEMENT TECHNIQUE

This technique, contrary to the common practice of increasing the
mesh size or the basis function order, minimizes the discretization
error, for a given mesh, by taking advantage of the RRP. According
to this principle, the approximate eigenvalues );, obtained by solving
the resulting matrix eigenvalue problem Ax = ABux, where A and
B are Hermitian and B is positive definite, are always upper bounds
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